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The Oseen resistance of a particle of arbitrary shape 
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Let Do be the Stokes drag on an arbitrary body moving parallel to a principal 
axis of resistance, with velocity U ,  through an unbounded fluid. The Oseen drag, 
D, experienced by this same body moving with equal velocity and identical 
orientation through the unbounded fluid is then given by the expression 

Do R + O(R2), 
D - - = I + -  
DO 167rpc U 

where c is any characteristic particle dimension and R = cUp1,u is the particle 
Reynolds number. An analogous expression is given for the case where the 
motion is not parallel to a principal axis. Finally, an expression is given for the 
Oseen resistance of an arbitrary particle falling parallel to a principal axis of 
resistance along the axis of a cylindrical tube of finite radius. 

1. Introduction 
The parameter of central importance in the hydrodynamics of low Reynolds 

number flows is the resistance experienced by a particle moving uniformly 
through an infinite fluid. Analytical resistance formulae are available in the 
Stokes regime for a diverse variety of particle shapes (Stimson & Jeffery 1926; 
Oseen 1927; Ghosh 1927; Relton 1931; Pell & Payne 1959; Payne & Pell 1960). 
Where analytical results are lacking, experimental data often exist for this 
regime (cf. Pettyjohn & Christiansen 1948; Heiss & Coulll952; Becker 1959). The 
corresponding state of affairs in the Oseen regime is not nearly as satisfactory, 
and resistance formulae are available for only a relatively few three-dimensional 
particles (Oseen 1927). 

In  this paper we shall demonstrate that the Oseen resistance of an arbitrary 
body can be determined, at once, whenever the corresponding Stokes resistance 
is known for the particle. The method yields results correct only to terms of 
O(R). This is not a real limitation, for Proudman & Pearson (1957) have shown 
that the Oseen equations correctly represent the asymptotic behaviour of the 
complete Navier-Stokes equations only to terms of this order of magnitude 
anyway; thus, higher-order solutions of the Oseen equations, such as that given 
by Goldstein (1929) for the sphere, are devoid of real physical significance. 

2. Motion parallel to a principal axis 
A closely related problem has been considered by Chang (1960) for the axially 

symmetric Stokes flow of a conducting fluid past a body of revolution in the 
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presence of a uniform magnetic field. An equation identioal to that cited in the 
abstract results, except that the (dimensionless) Hartmann number, M ,  appears 
in place of the Reynolds number, R. Chang (1960) gives a formal proof of this 
relation, as well as similar relations (1961a,b), based on ‘matching’ the funda- 
mental solution of the Stokes equations to the fundamental solution of his 
magnetohydrodynamic differential equation. These fundamental solutions 
correspond physically to the fields resulting from a point force concentrated at 
the origin, and are termed ‘inner’ and ‘outer’ solutions, respectively. The basic 
ideas derive from the work of Lagerstrom & Cole (1955) and Proudman & 
Pearson (1957). 

Now, the structure of Oseen’s equation and its fundamental solution are 
extremely similar to those for the corresponding magnetohydrodynamic problem.? 
Moreover, Proudman & Pearson (1957) have fully discussed the ‘matching’ of 
the Oseen and Stokes equations for the particular case of a spherical particle. 
For these reasons) it is unnecessary to give the formal details of our procedure; 
rather, the combined work of Proudman & Pearson (1957) and Chang (1960) 
assure us of the existence of a general relation of the form of equation (1). The 
only detail requiring further attention is the justification of the numerical 
coefficient of 16i.r in equation (1). On account of the generality of the result, the 
coefficient can be deduced from any one of the known solutions of the Oseen 
equation, e.g. a sphere. For a sphere of radius u, we have (Oseen 1927) 

D = 6i.rpaU ( 1 + - -  ; a?) + 
Since the Stokes drag for the sphere is related to its radius by the expression 
Do = 67i-paU we find, upon eliminating a between these two relations) that 

_ -  D - 1 + 2 D (-) PU +O(R2). 
Do 16npU p 

This can be put in the form of equation (1) by multiplying and dividing the inertial 
coefficient by any characteristic particle dimension) c. 

There is one important difference with regard to the limits of applicability of 
Chang’s (1960) result and ours. His result is restricted to axially symmetric 
flows because of the requirement that there be sufficient symmetry to preclude 
the existence of an electric field. On the other hand, our result is not limited to 
axisymmetric flows. Rather, it is limited only by the requirement that the 
Stokes force on the particle (and thus the Oseen force) be parallel to its direction 
of motion. Alternatively if the particle is at rest, the force must be parallel to the 
free-stream velocity. This will occur, for example, when the particle possesses 
three mutually perpendicular symmetry planes, providing that the motion is 

t They do, however, differ in one important respect. The first-order Stokes (inner) 
equation (Proudman & Pearson 1957, equation (3*40)), which eventually gives rise to the 
drag term of O ( R ) ,  contains an inhomogeneous forcing term. This is lacking in the analo- 
gous first-order inner equation of Chang (1960), equation ( 6 b ) ,  which is the source of the 
drag term of O ( M )  in the magnetohydrodynamic problem. However, as pointed out by 
the former authors, this inhomogeneous term does not give rise to a net drag. Hence, 
the analogy persists in spite of the difference. 
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normal to any one of them, Ellipsoids and right-angled prisms are examples of 
such bodies. 

The criterion that the force and velocity be parallel will also be met by arbitrary 
bodies in certain circumstances; that is, by bodies devoid of any symmetry 
whatsoever. For, as pointed out by Landau & Lifshitz (1959), the Stokes vector 
force, Do, on an arbitrary body past which fluid streams with velocity U can be 
expressed by a linear relation of the form 

Do = CP.U. (3) 

Here, CP is a symmetric tensor, directly proportional to the viscosity of the fluid, 
but otherwise dependent only on the geometry of the particle. It follows at  once 
from the properties of symmetric tensors that every arbitrary particle possesses 
three mutually perpendicular axes such that, if the motion is parallel to any one 
of them, the force, Do, will be parallel to U. (We shall refer to these as the prin- 
cipal axes of resistance.) In  consequence, equation ( 1 )  applies even to arbitrary 
bodies providing that the motion is parallel to a principal axis. 

By way of illustration, for a circular disk of radius c, broadside to the stream, 
the Stokes drag is Do = l6pcU (Lamb 1932). Thus from equation (1)  

D = 16pcU(1+R/r)+O(R2), 

in accord with Oseen’s (1927) result. In  a similar vein, when the disk is edge-on 
to the stream, Do = Y p c U  (Lamb 1932), and we find for the Oseen drag 

D = ~ ~ p c U ( l + ~ R / r ) + O ( R 2 ) ,  

again in agreement with Oseen’s calculations. It is worth while noting that the 
latter orientation does not give rise to an axisymmetric motion. Equation (1) 
shows similar agreement with Oseen’s calculations for the general ellipsoidal 
particle, providing that the motion is perpendicular to a symmetry plane. 

The Oseen drag on a spherical particle appears to conform with experiment only 
up to R M 1 (Becker 1959). This can hardly be regarded as a major practical 
improvement over Stokes’s original result. However, Carrier (1953) has shown 
empirically that predictions made on the basis of Oseen’s equation come into 
excellent agreement with experimental data for spheres, cylinders and flat plates, 
up to R M 20, if thevelocity Uin Oseen’s equationismultipliedby0~43. Thegeneral 
applicability of Carrier’s hypothesis would greatly enhance the value of the 
present work. And it therefore seems a worthwhile task to review critically the 
great mass of low Reynolds number settling velocity data with this thought in 
mind. 

3. Motion oblique to a principal axis 
Equation (1) is inapplicable when the orientation of the body is such that the 

stream velocity is not parallel to a principal axis. For now, the particle will also 
experience lateral forces, that is, normal to the direction of flow. However, the 
analogue of equation (1) can be developed for this case by availing ourselves of 
the detailed solution of the Omen equations (Oseen 1927), for the motion of a 
general ellipsoid whose symmetry planes are arbitrarily inclined with respect to 
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its direction of motion. This is done by eliminating the dimensions of the 
three semi-axes of the ellipsoid through their connexion with the Stokes drag. 

denotes the (dimensionless) Stokes resistance tensor, appropriate to an arbitrary 
particle, the final expression for the Oseen force on the particle takes the form 
(in dyadic notation) 

D = ,ucU[I + ( R / 3 2 ~ )  {3+ - I(U/U) .+ . (U/U))] .+ . (U/U) + O(R2), ( 5 )  

where I is the idemfactor, R = cUp/,u is the particle Reynolds number and c is 
any characteristic length. Formal justification of this result can be provided 
along lines similar to those developed by Chang (1960) for the corresponding 
magnetohydrodynamic problem. The fundamental solutions are, naturally, 
more involved. The ‘inner’, Stokes solution is already available in Lamb’s 
(1932) treatise. 

Equation (5) can be expressed in terms of the three scalar components of the 
Oseen force. Let (z’, y’, 2’) be a system of Cartesian co-ordinates measured along 
the principal axes of resistance of the particle. If (i‘, j‘, k’) are unit vectors in 
these directions, then 1 = i‘i’ + j‘j’ + k’k’ 

(6) 

where the essentially positive scalars (Lo, No, No), are the principal Stokes 
resistances, expressed in dimensionless form. 

Now, let (z, y, z) be a second system of Cartesian co-ordinates having the same 
origin as the former, associated with the direction of the streaming flow, and let 
(1, j, k) be the corresponding unit vectors. Without loss in generality, suppose 
that the fluid streams in the positive x-direction with velocity 0; that is 
U = kU, where U is essentially positive. If 

and $ = i‘i‘L +”” ~~J4,+k‘k‘fl,, 

D = iD, + jD, + kD, (7) 

is the Oseen force exerted by the fluid on the particle, and if 

a,, = i .  j’ = cos (i, j’), a,, = j . i’ = cos (j, i’), etc. 

denote the direction cosines, then a relatively simple calculation gives, for the 
components of force in the (z, y, x )  system, 

where 

in which 
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It is worth while noting that the force experienced by the particle can also be 
expressed in (x', y', 2')-co-ordinates in the form 

D = ,ucU(i'A+ j'i@ + k'm). (11) 

As a specific illustration, consider streaming flow past a circular disk of radius 
c, as in figure 1. The normal to the plane of the disk corresponds to the 2'-axis, 
and the angle between this and the direction of motion of the stream is denoted 
by 8, where it is assumed that 0 < 8 < an. The y-axis is chosen so as to lie in the 
plane of the disk and to coincide with the y'-axis. By these means, the x'- and 
z'-axes may be regarded as deriving from the x- and z-axes, respectively, by a 
rotation about the y, y'-axis through the angle 8. The x- and z-axes then lie in 
the same plane as the corresponding primed axes. To be unambiguous, we also 
specify that the angle between the x'- and z-axes lie between 0 and 471. In  figure 1, 
the y, y'-axis is directed out of the plane of the paper, at  the reader, thereby 
leading to right-handed co-ordinate systems. 

Direction 
of motion 
of fluid 

F I G ~ E  1. Streaming flow past a circular disk. 

The direction cosines appropriate to the rotation are given by 

aZ2 = 1. a,, = a33 = cos 8, aS1 = - aI3 = sin 8, 

All others are zero. The principal Stokes resistances can be obtained from the 
results cited earlier for disks oriented broadside and edgewise to the stream. They 
are L, = M, = Gg, N, = 16. These lead to the following expressions for the 
components of the Oseen force on the disk: 

D, = -+c,ucUsinB cosO[l+(R/7r)(2++sin28)]+O(R2), D, = 0, 

13, = l6pc u[ 1 - f sin2 8 + (R/n) ( 1 - 4 sin2 8 - & sin4 B)]  + O(R2). 

The algebraic signs indicate that the forces act in the -x and + z  directions 
respectively. 

4. Settling of an arbitrary particle along the axis of a circular cylinder 
A recent paper by Chang (1961 b )  gives the solution of the problem of the axially 

symmetric Stokes fall of an arbitrary body of revolution along the axis of a 
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circular cylindrical tube filled with conducting fluid, in the presence of a magnetic 
field. Chang’s results simultaneously take account of the first-order corrections 
to Stokes law necessitated by the presence of the tube walls and of the magnetic 
field. The increased resistance can be neatly calculated solely from a knowledge 
of the ordinary Stokes drag, Do-that is, in the absence of both the tube walls 
and magnetic field-providing that c / l  and M are both small. Here, I is the tube 
radius and M is the Hartmann number. 

The analogous problem, in which the particle Reynolds number, R, replaces 
M ,  corresponds to the settling of a particle at the axis of a tube in the Oseen 
regime (in the absence of the magnetic field). This problem was solved long ago 
by Faxen (Oseen 1927, p. 198) for the case of B spherical particle at  the axis. On 
the basis of our earlier remarks regarding the fundamental similarity of the 
Oseen and inertialess magnetohydrodynamic equations, we can at once generalize 
Faxen’s formula and make it apply to an arbitrary particle falling parallel to a 
principal axis along the longitudinal cylinder axis. This only requires that we 
replace the sphere radius a in Faxen’s formula by (Do/6n,uU), with the result 
that the Oseen drag is 

D =  D o / [ l - F u  Do R - 6npcu (!) 1 L(iRl/c) + O( y] + O(R2), (12) 

where R = cUp/p  is the particle Reynolds number. In  addition, L(x)  is a function 
of argument x = Rl/2c, some values of which are tabulated in Oseen’s book, 
i.e. for small x, L(x) = 2 * 1 0 4 - $ ~ +  ..., 
and L(0) = 2.104, L(0.5) = 1-76, L(1) = 1.48, L(2) = 1.04, L(5) = 0-46. 

Chang’s (1961b) result is virtually identical to equation (12) in which the 
Hartmann number, M ,  replaces the particle Reynolds number, R. The primary 
difference between the two lies in the fact that in Chang’s (19616) formula, the 
denominator of equation (12) appears in the numerator, there being corre- 
sponding changes in the algebraic signs. Faxen’s result is the more accurate of 
the two, a t  least in the special case where R -+ 0, in which event equation (12) - 
takes the form 

D = D,/[l-2.104&l+O(~)3], 

a result previously given by Brenner (1961a) for the Stokes r6gime. 
It appears further that Faxen’s integral, L(x) ,  is different from a corre- 

sponding integral, K(x) ,  appearing in Chang’s treatment. They are, however, 
closely related in form, and both give the limiting values 

L(0) = (3/.rr)K(O) = 2-104 and L(o0) = (3/7r)K(co) = 0. 

The last value shows that equation (12) becomes identical to equation ( l ) ,  
correctly to terms of O(R) ,  in the case where c / l +  0. 

Although equation (1 2) appears analytically sound, its practical applicability 
in the case of spherical particles has been questioned (Fayon & Happel 1960). 

One last point worth noting concerns the pressure difference, AP > 0, at a 
39 Fluid Mech. 11 
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great distance on either side of the particle settling in the tube. Chang’s (1961 b)  
calculations show that APnP = 2D, 

where A P  is a vector pointing in the direction of diminishing pressure and having 
the magnitude of the pressure difference. This result confirms Brenner’s (1961 b )  
prediction of the existence of such a relation in the Oseen rbgime, it already 
having been demonstrated to hold in the Stokes regime (Brenner 196lb). 
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